Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 **Power System Analysis and Stability**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.

2. Missing data, if any, may be suitably assumed.

PART - A

- Draw the per phase basis, representation of synchronous Generator, synchronous motor, Transformer, Transmission line and static load. (04 Marks)
 - Explain the procedure of drawing P.U. reactance diagram from SLD. (04 Marks)
 - c. Obtain the reactance diagram of the power system shown in Fig Q1(c), mark all reactance values in P.U on a base of 50MVA, 138KV in the 40Ω line. The machine ratings are

 $G_1: 20 \text{ MVA} \cdot 13.2 \text{ KV}$ x'' = 15% M: 30 MVA 6.9KV x'' = 20%

13.2 KV $G_2: 20 \text{ MVA},$ x'' = 15%

Three phase Y – Y Transformers : 20MVA, 13.8/138 KV, x = 10%

Three phase Y - Δ Transformers: 15MVA, 138/6.9KV,

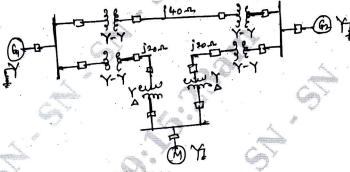


Fig Q1(c)

(12 Marks)

(10 Marks)

- Define the term fault in a system. What are the common causes for faults? (04 Marks)
 - With the help of oscillogram of S.C. current of a synchronous generator operating on no load show that $x''_d < x'_d < x_d$. (06 Marks)
 - For the radial network shown in Fig Q2(c). A three phase fault occurs at point F. Determine the absolute value of fault current.

1 of 3

- 3 a. Prove that a balanced set of 3-phase voltage will have only positive sequence components of voltage only. (06 Marks)
 - b. Derive an expression for the 3φ complex power in terms of symmetrical components.

(06 Marks)

- c. A balanced star connected load takes 30A from a balanced 3-phase, 4 wire supply. If the fuses in two line are removed. Find the symmetrical components of the line currents before and after the fuses are removed. (08 Marks)
- 4 a. What are sequences impedance and sequence network.

(04 Marks)

- b. Draw the zero sequence impedance network of a transformer for the following connections.
 - i) $\gamma \Delta$ ii) $\Delta \gamma$ iii) $\gamma \gamma$ iv) $\Delta \Delta$

(10 Marks)

c. A 250MVA, 11KV, 3 phase generators is connected to a large system through a transformer and a line as shown in Fig Q4(c)

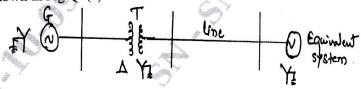


Fig Q4(c)

The parameters on 250MVA base are as follows:

Generator

: $x_1 = x_2 = 0.15$ P.U, $x_0 = 0.1$ PU

Transformer

: $x_1 = x_2 = x_0 = 0.12 \text{ PU}$

line

: $x_1 = x_2 = 0.25 \text{ PU}, x_0 = 0.75 \text{ PU}$

Equivalent system : $x_1 = x_2 = x_0 = 0.15 \text{ PU}$ Draw the sequence network diagrams for the system and indicat all per unit values.

(06 Marks)

PART - B

- 5 a. What are unsymmetrical faults? Explain various types of unsymmetrical faults. (05 Marks)
 - b. Derive an expression for fault current, when Single Line to Ground fault (SLG) occurs on an un loaded generator. Draw the connection of sequence network. (08 Marks)
 - c. A three phase generator with line to line voltage of 400V is subjected to an LLG fault. If $z_1 = j2\Omega$, $z_2 = j0.5\Omega$ and $z_0 = j0.25\Omega$. Determine the fault current. (07 Marks)
- a. Derive expression for fault current, if Line Line Ground (LLG) fault occurs through fault impedance z_f in power system. Show the connection of sequence network to represent the fault. (10 Marks)
 - b. Derive an expression for fault currents for
 - i) One conductor open fault
 - ii) Two conductor open fault and draw the sequence network diagrams.

(10 Marks)

7 a. Explain steady state stability and transient stability as applicable to a power system.

(04 Marks)

b. Derive the power angle equation of an non salient pole synchronous machine and draw the power angle curve. (08 Marks)

- c. A turbo generator, 6 poles, 50Hz, 80mW capacity working at 0.8 p.g has an intertia of 10mJ/MVA.
 - i) Calculate the energy stored in the rotor at synchronous speed
 - ii) Find the rotor acceleration, if the mechanical input is suddenly raised to 75mW for an electrical load of 60mW.
 - Supposing the above acceleration is maintained for duration of 6 cycles, calculate the change in torque angle and the rotor speed at the end of 6 cycles. (08 Marks)
- Write short notes on:
 - a. Selection of circuit breakers
 - b. Impedance and reactance diagram
 - c. Equal area criterion for transient stability
 - c. Analysis of 3\$\phi\$ induction motor with one line open.

(20 Marks)